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Abstract

Background: Previous studies have examined the association between blood lead levels and 

pubertal timing in adolescent girls; however, the evidence is lacking on the role of lead exposure 

during sensitive developmental periods on sexual maturation.

Objectives: To examine the association of prenatal and early childhood lead exposure with 

pubertal stages among 264 boys and 283 girls aged 9.8-18.0 years in Mexico City.

Methods: We measured maternal bone lead (a proxy for cumulative fetal exposure to lead from 

maternal bone stores mobilized during pregnancy) at 1 month postpartum. Blood lead was 

measured annually from 1-4 years. Pubertal stage was assessed by a pediatrician. We examined the 

association between lead and pubertal stages of breast, pubic hair and genitalia using ordinal 

regression. Age at menarche was evaluated using Cox proportional-hazard models.
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Results: Multivariate models showed that maternal patella lead and early childhood blood lead 

were inversely associated with breast growth (patella OR=0.72, 95% CI: 0.51–1.00; blood 

OR=0.70, 95% CI: 0.53–0.93) in girls. Girls with maternal patella lead in the 3rd tertile and child 

blood lead in the 2nd tertile had a later age at menarche compared with girls in the 1st tertile 

(patella HR=0.60, 95% CI: 0.41–0.88; blood HR=0.65, 95% CI 0.46–0.91). Additionally, early 

childhood blood lead was negatively associated with pubic hair growth (OR=0.68, 95% CI: 0.51–

0.90) in girls. No associations were found in boys.

Conclusions: These data suggest that higher prenatal and early childhood exposure to lead may 

be associated with delayed pubertal development in girls but not boys. Our findings are consistent 

with previous analyses and reinforce the reproductive effects of lead for girls.
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1. Introduction

Lead, a ubiquitous environmental toxicant, is associated with a variety of adverse health 

effects (Bellinger 2011). Infants, children, and pregnant women are the most vulnerable to 

lead toxicity (National Research Council (U.S.). Committee on Measuring Lead in Critical 

Populations. et al. 1993). A growing body of research has shown that elevated blood lead 

levels in utero and during childhood are associated with impaired nervous, reproductive and 

cardiovascular systems (Silbergeld 1990; WHO 2010). Although blood lead levels have 

decreased over time, mainly due to the phase-out of leaded gasoline (Caravanos et al. 2014; 

Falk 2003), other routes of exposure still exist and pose a continued public health burden, 

especially in developing countries such as Mexico (Falk 2003; Schnur and John 2014) and 

many US inner cities and underserved areas (Bellinger 2016). Moreover, bone lead 

accumulated from years of exposure is known to both persist for many years and, in 

pregnant women, serve as a source of prenatal exposure due to the marked increase in bone 

turnover that is known to occur during pregnancy (Hu and Hernandez-Avila 2002).

Previous studies have shown that lead is readily transferred from mother to offspring by 

crossing the placental-fetal barrier during gestation and via breast milk during lactation 

(Koyashiki et al. 2010; WHO 2010). Many existing studies have investigated the association 

between early-life lead exposure and neurodevelopment in children (Bellinger et al. 1987; 

Sanders et al. 2009; Schnaas et al. 2006) with a few studies that have linked lead exposure to 

delayed pubertal timing. Animal studies found that prenatal and early-life exposure to lead 

resulted in delayed pubertal onset by decreasing serum hormones including estradiol, 

luteinizing hormone (LH) and insulinlike growth factor-1 (IGF-1) (Dearth et al. 2002; 

Dearth et al. 2004; Ronis et al. 1996). However, fewer analyses have characterized the 

potential role of lead in pubertal development across sensitive periods of exposure in human.

In girls, it has been shown that blood lead (3 μg/dL versus 1 μg/dL) was associated with a 

later age at menarche in African-Americans, delayed breast maturation and pubic hair 

growth in both African-Americans and Mexican-Americans (Selevan et al. 2003). Blood 

lead levels (> 2 μg/dL) were also found to be significantly associated with delayed female 
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pubic hair growth and attainment of menarche in another U.S. investigation (Wu et al. 2003). 

Blood lead concentration higher than 5 μg/dL has been related to a delay in pubertal 

development for breast maturation, pubic hair growth, and menarche in 13-year-old South 

African girls (Naicker et al. 2010). In contrast, two studies provide no evidence for the 

negative associations in U.S. girls at age 9 (Wolff et al. 2008), and in Polish girls at age 7–16 

(Slawinska et al. 2012). The evidence on the role of lead exposure on pubertal development 

in boys is rare. Two Russian investigations revealed a delayed pubertal onset of genitalia in 

boys aged 8–9 years (Hauser et al. 2008) and testicular volume (>3mL) in a later follow-up 

study of the same boys (Williams et al. 2010).

In this study, we aimed at addressing research gaps including the lack of studies that 

characterize multiple sensitive periods of exposure using a longitudinal design and the 

studies in boys by examining the prospective association of prenatal and early-life lead 

exposure with secondary sexual characteristics in girls and boys at age 9.8–18.0 years in 

Mexico City.

2. Methods

2.1 Study population

Pregnant women were recruited at three public maternity hospitals (Manuel Gea Gonzalez 

Hospital, Mexican Social Security Institute and the National Institute of Perinatology) in 

Mexico City, which serve low-to-moderate income population. These mothers were followed 

for 12 months post-partum and their offspring were followed up to 4 years of age. Mothers 

completed interview-based questionnaires at baseline and a bone lead measurement. We 

collected blood samples from children every year from 12 to 48 months of age. We used the 

exclusion criteria applied to all birth cohorts, as described previously (Afeiche et al. 2011; 

Hu et al. 2006).

Children at age 9.8-18.0 years (n=550), who were likely to reach different stages of pubertal 

transition, were re-contacted and were asked to participate in the follow-up studies. The 

participants were selected if they had available maternal biological samples during 

pregnancy. Among these participants, 547 children had at least one measurement of maternal 

bone lead or childhood blood lead. During this visit, a blood sample and an interview-based 

questionnaire were collected from each child. Pubertal stages of breast, pubic hair and 

genitalia were evaluated by a trained pediatrician, as described elsewhere (Chavarro et al. 

2017). Additionally, each girl was asked if and when she had initiated menses and each 

boy’s testicular volume was measured by a trained pediatrician using a Prader orchidometer.

Research protocols were reviewed and approved by the ethics committees of participating 

institutions including the University of Michigan and the Mexico National Institute of Public 

Health. Informed consent from mothers and informed assent from their offspring were 

obtained before participation in this study.

2.2 Lead biomarkers

Maternal bone lead at 1 month postpartum was measured at the mid-tibial shaft (cortical 

bone) and patella (trabecular bone), and was used for estimating cumulative lead exposure to 
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fetus. These 2 bone levels (separate measurements of tibia and patella) were determined 

using the X-ray fluorescence instrument, which is a non-intrusive approach and contains low 

radiation. Given that mobilization of maternal skeletal lead stores is a main route of fetal 

lead exposure, maternal bone lead can serve as an important biomarker of cumulative fetal 

lead exposure over the course of pregnancy independent of maternal blood or umbilical cord 

blood lead levels (Gomaa et al. 2002). The X-ray fluorescence instrument can sometime 

produce negative values when a person has low concentrations of bone lead (around zero). It 

is important to include these negative lead values because they can improve the presentation 

of the true distribution (Specht et al. 2016). Detailed information regarding the protocol, 

application, validation and quality control of using this system has been described elsewhere 

(Gonzalez-Cossio et al. 1997; Hu et al. 1989, 1991; Hu et al. 1995). In this study, we 

measured bone lead at 1 month postpartum, which has been used previously to study 

prenatal lead exposure and child health outcomes using the same cohort (Afeiche et al. 2011; 

Zhang et al. 2012).

Each child provided a blood sample (2mL), which was stored in trace-metal-free tubes by 

trained research assistants using standardized protocols. We evaluated the lead concentration 

in child blood using graphite furnace atomic absorption spectroscopy (GFAAS). The 

measurements were carried out at American British Cowdray Hospital and validated by the 

Maternal and Child Health Bureau and the Wisconsin State Laboratory of Hygiene 

Cooperative Blood Lead Proficiency Testing Program (Pilsner et al. 2009). The quality 

control tests were as described previously (Afeiche et al. 2011; Gonzalez-Cossio et al. 

1997). All blood lead levels were above the limit of detection (<1 μg/dL). Cumulative early 

childhood lead exposure was obtained by calculating the area under the curve of repeated 

measures from 1-4 years.

2.3 Pubertal outcomes

In girls, the stages of pubertal development were defined by a pediatrician using Tanner 

staging scales for the breast maturation and pubic hair growth (Marshall and Tanner 1969). 

For breast growth, stage 1 represents having elevation of papilla only. Stage 2 represents the 

initiation of puberty. The breast tissues further enlarge at stage 3 and 4 and reach full growth 

at adult level at stage 5 (Marshall and Tanner 1969). For pubic hair growth, stage 1 

represents pre-pubertal with no pubic hair. Stage 2 represents initiation of puberty. The pubic 

hair grows darker and coarser at stage 3 and 4 and reaches adult level at stage 5 (Marshall 

and Tanner 1969, 1970). Menarche was measured via a self-reported questionnaire. In boys, 

the stage of sexual maturation was defined by the pediatrician using Tanner staging scales 

for the development of genitalia and pubic hair. For genital development, stage 1 represents 

pre-puberty. Stage 2 represents the onset of puberty with enlargement of scrotum and testes. 

The penis continues to enlarge and further grow at stage 3 and 4 and reaches adult genitalia 

at stage 5 (Marshall and Tanner 1970). The volume of the testis was used as another 

indicator of puberty for boys. Right and left testicular volume was determined using an 

orchidometer ranging from 1 to 25 mL. In our analysis, the larger volume of the right and 

left testicles was used. A cutoff of 20 mL was applied to represent adult level (≥20 mL) 

(Burns et al. 2016).
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2.4 Statistical analysis

Descriptive statistics were conducted. The distributions of lead measurements were 

examined. Patella and tibia lead were normally distributed, while early-life lead was skewed 

to the right. Since normality on independent variable is not required for logistic or Cox 

proportional-hazard regression models, we elected not to transform the non-normal variable 

in this study. We calculated Spearman correlation coefficients among all the lead 

biomarkers. Variables likely to be potential confounders of the association between lead and 

pubertal development based on biological plausibility or covariates considered to be 

predictors of outcomes of pubertal measures were included; these included maternal 

education, marital status, number of siblings at birth and child age. Maternal education and 

marital status at birth have been shown to be associated with age at menarche (Deardorff et 

al. 2014; Ramezani Tehrani et al. 2014) and lead levels (Choi et al. 2016; Kim et al. 2018). 

The number of siblings has been associated with increased menarcheal age (Morris et al. 

2010).

Multivariate ordinal regression models were used to examine the association of bone lead at 

1 month postpartum and cumulative blood lead from 1-4 years with each of the Tanner 

stages separately. The dependent variables in this analysis were Tanner staging for pubic hair 

and breast development (stage 1-stage 5) in girls. In boys, the dependent variables were 

Tanner staging for pubic hair and genitalia (stage 1-stage 5). We used multivariate logistic 

regression to examine the association with the attainment of matured testicular volume 

(≥20mL).

Time-to-event methods were used to analyze the association between lead concentration and 

age at menarche in girls, which appropriately account for censored data (Kleinbaum et al. 

2012). Cox proportional-hazard regression models were applied to estimate hazards ratios 

(HRs) and 95% confidence intervals (CIs). Time to event (i.e. menarche) was based on the 

menarcheal age (years) reported by participants or right-censored observations using the age 

at the assessment of pubertal stages. For this analysis, we treated each lead biomarker as a 

continuous variable and also as a categorical variable by tertiles. We defined statistical 

significance as p < 0.05. We used SAS (version 9.4; SAS Institute Inc., Cary, NC, USA) to 

analyze the data.

2.5 Sensitivity Analyses

In the sensitivity analyses, we further adjusted for variables that are possible confounders. 

To address the potential confounding effect of child growth and body size, we included 

height and BMI z-score in our models. BMI was calculated and converted to an age and sex-

specific z-score based on the World Health Organization (WHO) standard curves for 

children and adolescents. We also examined the potential confounding effect of early-life 

lead exposure levels on the association between maternal bone lead and each indicator of 

pubertal development.
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3. Results

Our final analysis included 547 mother-offspring pairs with a total of 283 girls and 264 boys 

(Table 1). The mean age was 14.5 years, ranging from 9.8 to 18.0 years. In the total sample, 

the interquartile range (IQR) for maternal patella and tibia and cumulative early-childhood 

lead was 13.57 μg/g, 13.3 μg/g and 7.66 μg/dL, respectively. Maternal bone lead 

concentration in the patella at 1 month postpartum was appreciably higher than in the tibia 

among girls, but not boys (female: median patella 8.2 μg/g; tibia 7.6 μg/g). The median of 

cumulative early-childhood blood lead was 14.3 μg/dL and 13.8 for boys and girls, 

respectively. The 3 lead biomarkers were correlated (p <0.0001) (Supplemental Table 1). 

The Spearman correlation between maternal patella and tibia lead was moderate at 0.48; the 

correlation was 0.18-0.19 between maternal bone lead (tibia or patella) and cumulative 

early-childhood blood lead.

Among 264 male participants, 19.1% were at stage 1 (pre-pubertal) and 21.1% were at stage 

5 (adult level) for pubic hair growth; 5.6% and 22.7% were at stage 1 and 5 for genitalia, 

respectively (Table 2). There were 176 boys (70.1%) who had matured testicular volume (≥ 

20mL). Among 285 female participants, 7.3% were at stage 1 and 19.6% were at stage 5 for 

pubic hair growth; 4.3% and 23.3% were at stage 1 and 5 for breast maturation, respectively. 

Among 238 girls (84.4%) who had attained menarche, the mean (SD) age at menarche was 

11.6 (SD=1.2).

We report the associations between one-IQR higher prenatal and early-life lead 

concentrations and pubertal development in boys (Table 3) and girls (Table 4) using separate 

models. No significant associations were found in boys between any given lead biomarker 

and puberty estimated by Tanner stage or testicular volume (Figure 1). In girls, maternal 

bone lead and early childhood blood lead were negatively associated with puberty. In the 

fully adjusted models, the odds of reaching a high stage of breast maturation versus 

combined low and middle stages decreased by 28% (OR: 0.72, 95% CI: 0.51, 1.00, p=0.048) 

per IQR increase in patella bone lead, and decreased by 30% (OR: 0.70, 95% CI: 0.53, 0.93, 

p=0.013) per IQR increase in cumulative 1-4 years blood lead (Figure 2). The cumulative 

early-life blood lead was also negatively associated with pubic hair growth with an OR=0.68 

(95% CI: 0.51, 0.90, p=0.006). Maternal tibia lead level was not associated with any 

indicator of pubertal development in girls.

In addition, after controlling for number of siblings at birth, maternal education and marital 

status, we found that girls with maternal patella lead in the 3rd tertile (range: 13.0-45.3 μg/g) 

had a later age at menarche compared with girls in the 1st tertile (<3.9 μg/g) (HR=0.60, 95% 

CI: 0.41–0.88, p=0.008) (Table 5; Figure 3). In the adjusted models, girls with cumulative 

1-4 years blood lead level in the 2nd tertile (range: 12.1-16.1 μg/dL) had a later age at 

menarche compared with girls in the 1st tertile (<12 μg/dL) (HR=0.65, 95% CI: 0.46–0.91, 

p=0.013).

In sensitivity analyses, additional adjustment for BMI z-score and height did not 

significantly change the association of pubertal development with any lead biomarker 

(Supplemental Table 2-4). The change of the magnitude of these associations ranged from 
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0% to 7.7% in girls, and from 3% to 17.2% in boys; the associations of puberty with 

maternal patella and cumulative early-life lead remained significant, although the association 

between maternal patella and breast maturation became marginally significant (p = 0.09). 

All the associations of lead biomarkers with puberty remained non-significant in boys. 

Further adjustment for cumulative early-life lead, we found that the parameter estimates of 

maternal patella lead in all the models were not appreciably changed (Supplemental Table 2 

and 4).

4. Discussion

This is the first epidemiological study to investigate the prospective associations of 

cumulative prenatal (as measured by maternal bone lead at 1 month postpartum) and 

cumulative early-life lead exposure (as measured by cumulative blood lead 1-4 years) with 

physical markers of pubertal development in Mexican boys and girls aged 9.8-18.0 years. In 

the present analysis, higher prenatal and early-life lead exposure were associated with a 

significant delay in pubertal development among girls. No associations were observed 

among boys. In the sensitivity analyses, further adjustment for additional potential 

confounders (e.g. child growth and body size) did not alter these associations.

Our findings are consistent with previous animal studies on female rats measuring the effects 

of early life lead exposure on pubertal development (Dearth et al. 2002; Dearth et al. 2004; 

Ronis et al. 1996) and a few cross-sectional analyses performed in girls similarly suggesting 

a negative association between childhood lead exposure and pubertal development (Naicker 

et al. 2010; Selevan et al. 2003; Wu et al. 2003). However, in the present analysis, no 

association between a given lead marker and any physical markers of puberty was found in 

boys, which is inconsistent with previous findings among Russian boys (Hauser et al. 2008; 

Williams et al. 2010). The use of different study populations, exposure periods, pubertal 

stages and statistical analyses may contribute to these inconsistencies. For example, the 2 

Russian studies in boys examined the onset of puberty (Tanner stage>1) and testicular 

volume > 3mL in much younger boys (at age 8-12 years), while our study evaluated the 

pubertal development from stage 1-5 (majority of the boys had Tanner stage>2) and 

testicular volume ≥ 20mL in older boys aged 10-17 years. The Russian investigations 

examined lead exposure levels in middle childhood, while we examined much earlier 

developmental periods during pregnancy and early-life. Furthermore, the significant 

associations between middle childhood lead exposure and pubertal onset were only observed 

in the high blood lead group (≥5μg/dL) (Hauser et al. 2008; Williams et al. 2010); the 

significance disappeared when treating blood lead levels as continuous variables. Therefore, 

it is possible that the effect of lead is more profound on pubertal onset compared with 

advanced pubertal stages in boys or male pubertal stages or sex hormones (e.g. testosterone) 

can only be affected by high lead exposure (≥5μg/dL). In addition, previous studies have 

found that the concentrations of pubertal hormones (follicle stimulating hormone (FSH) and 

LH) were much higher in female fetuses than in male fetuses at mid-pregnancy (Debieve et 

al. 2000). It is possible that the effect of prenatal exposure to lead on sex hormones is more 

obvious in girls than boys, which eventually advances pubertal development in girls. Further 

studies evaluating all the sensitive periods are needed to confirm the inconsistent findings.
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Furthermore, only patella lead was significantly associated with delayed pubertal 

development while tibia lead was not. It is possible that these findings are due to the smaller 

sample size of tibia versus patella measurements, or the difference may be caused by the 

structure of the two bone sites with the patella, which is made mostly of trabecular bone 

(versus tibia, which is made mostly of cortical bone) being more vascularized, reflecting 

more recent lead exposure; in other words, the accumulation of lead is slower in the tibia, 

and the lead in the patella may also be more bioavailable for mobilization during pregnancy 

(Afeiche et al. 2011; Hu et al. 1989; Hu et al. 1998).

The negative associations of pubertal development with prenatal and early-life lead exposure 

in girls in our study are biologically plausible. It has been suggested that early lead exposure 

can cause decreased pubertal hormones, which subsequently lead to delayed pubertal 

development (Dearth et al. 2002; Dearth et al. 2004; Ronis et al. 1996). Specifically, early 

lead exposure can reduce the concentrations of estradiol, LH, and IGF-1 in serum, and then 

cause a delay in the timing of vaginal opening and the attainment of first estrus in rodents 

(Dearth et al. 2002; Dearth et al. 2004; Ronis et al. 1996). In addition to animal studies, a 

cross-sectional analysis of U.S. girls found that blood lead levels (≥ 5 μg/dL versus < 1 

μg/dL) were associated with lower serum inhibin-B levels, which was used as an indicator of 

follicular development (Gollenberg et al. 2010). Since inhibin B is produced from the 

granulosa cells in the ovaries, it is possible that lead may also have a direct effect on ovaries 

(Gollenberg et al. 2010). Both developmental stages (prenatal and early-life) can be 

considered as sensitive periods for pubertal development. It has been found that the 

hypothalamic-pituitary-gonadal (HPG) axis is active in mid-gestation and early infancy (Liu 

2017). In the 2nd trimester, with the increased activity of HPG axis, the concentrations of 

FSH and LH rise to the amount that is contributing to development of ovaries (Mueller 

2013). In early infancy, FSH and LH further increase and reach the peak concentrations. 

During this period, sex hormones (e.g. estradiol) reach levels that are comparable to the 

levels at early-middle puberty, which is defined as “mini-puberty of infancy” (Kurtoglu and 

Bastug 2014). Hence, lead may have an impact on the development of ovaries and sex 

hormones in pregnancy and early-life, respectively, which may independently affect female 

pubertal development in later life.

This study was somewhat limited by the sample size for modeling ordinal outcomes. In 

addition, the mediating effects of serum sex and growth hormones were not evaluated. Given 

that our study sample represents low-to-middle class among Mexican children, the results 

may not be generalizable to other socioeconomic populations or populations with different 

ethnic composition. As with any investigations that report previous events, our study is 

subject to bias in recall due to the use of self-reported age at menarche. However, previous 

analyses have shown that the actual age at menarche was highly correlated with self-reported 

menarcheal age within 5 years of follow-up in peripubertal girls (Koprowski et al. 2001) and 

30 years in middle-aged women with baseline age at 7-9 years (Must et al. 2002). The 

strengths of this study include the ability to examine the impact of lead at multiple life 

stages on pubertal development, the use of physician-assessed pubertal stages, the 

measurement of testicular volume as an additional pubertal marker, which has barely been 

used in previous studies, and the use of maternal bone lead representing cumulative measure 

of prenatal lead exposure. Given that lead can accumulate in bones with a long half-life 
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ranging from 10 to 30 years, lead exposure can persist for long periods after external 

exposure sources have ceased (Hu 1998; Zhang et al. 2012). Mobilization of cumulative 

bone lead stores during pregnancy into fetal circulation contributes significantly to the fetal 

exposure to lead (Hu et al. 1998; Tellez-Rojo et al. 2004; Zhang et al. 2012). Therefore, 

maternal bone lead may be more reflective of lead exposure during sensitive periods, which 

have been associated with disrupted development of fetus and infants (Tellez-Rojo et al. 

2004).

5. Conclusions

We found that higher prenatal and early-life exposure to lead were associated with delayed 

breast maturation, pubic hair growth and later age at menarche in girls. Future research 

including mediators such as serum hormonal markers is needed to confirm our results and to 

deepen our understanding of the mechanism involved in the association between lead 

exposure during sensitive periods and the neuroendocrine system.
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Highlights

• Lead is a ubiquitous environmental toxicant, which is associated with a 

variety of adverse health effects.

• Infants, children, and pregnant women are the most vulnerable to lead 

toxicity.

• Animal studies found a delay in pubertal onset as a result of prenatal and 

postnatal lead exposure, but it remains unclear in humans.

• We examined that association of secondary sexual characteristics with 

prenatal and cumulative lead exposure from 1-4 years of age in children.

• Higher prenatal and early childhood exposure to lead are associated with 

delayed pubertal development in girls.
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Figure 1. 
Odds ratio (95% confidence interval) of physician-assessed pubertal development per IQR 

increase in maternal bone and early childhood blood lead concentrations in boys. Results 

adjusted for child age at visit, maternal education and marital status, and number of siblings 

at birth.
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Figure 2. 
Odds ratio (95% confidence interval) of physician-assessed pubertal development per IQR 

increase in maternal bone and early childhood blood lead concentrations in girls. Results 

adjusted for child age at visit, maternal education and marital status, and number of siblings 

at birth.
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Figure 3. 
Hazard ratio (95% confidence interval) of self-reported menarche according to maternal 

bone lead concentrations and early childhood blood lead concentrations in girls. Results 

adjusted for number of siblings at birth, maternal education and marital status.
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